Measuring Apparent Viscosity at High-Temperature and High-Shear Rate (HTHS) by Multicell Capillary Viscometer Stefan Lim, MinJee Kim, Brian Bick, Jacky Jiang, Anson Law, Sarjeel Zaman, Raj Shah

Overview

Apparent Viscosity at High-Temperature High-Shear Rate (HTHS) is a viscosity measurement of the engine oil that determines standard oil viscosity grades at high temperature and high shear rates. This is accomplished by performing the test under high temperature and high speed, similar to the conditions that engine oil flows through. Our HTHS tests an oil's viscosity at a temperature of 150°C using a multicell capillary viscometer containing pressure, temperature, and timing instrumentation.

ASTM D5481

ASTM D5481 uses a multicell capillary viscometer to determine the high temperature shear viscosity of engine oils. This is done at a set temperature of 150°C. The shear rate for the method parallels to an apparent shear rate at the wall of 1.4 million reciprocal seconds. Viscosities from calibrations made with found are Newtonian oils with normal viscosities from 1.4 mPa-s to 5.0 mPa-s at 150 °C. High temperature viscosity is an important characteristic for liquid engine lubricants since it changes depending on the temperature. The viscosity of an engine lubricant is most useful when the measurements are taken at or near the conditions of the lubricant's shear rate. This test method is designed to simulate the conditions in the bearings of automotive equipment at that critical point.

References

ASTM D5481 "Standard Test Method for Measuring Apparent Viscosity at High-Temperature and High-Shear Rate by Multicell Capillary Viscometer" (ASTM International)

Basic Principles of the Test

The test sample will be introduced into the viscometric cell by opening the plug valve. Any excess test sample will be sucked back out to alleviate gas bubbles. Nitrogen gas will be used to pressurize the system to achieve a nominal flow time. When the operator starts the test, the nitrogen gas will rush into the cell. At this point a timer is started. During this time, the pressure increases to continually push the test sample out of the cell. When the test sample is completely displaced from the cell, the flow of pressurized gas increases in the capillaries causing the timer to stop. The test sample is typically emptied through the oil outlet on the bottom of the instrument. The flow time and pressure are recorded and used to calculate sample's viscosity and shear rate.

Specifications of Our HTHS

Below are the specifications for using our High-Temperature High-Shear Multicell Capillary Viscometer

Power: 800W **Rated Voltage:** AC 220V 50Hz **Test Temperature:** $150^{\circ}C \pm 0.1^{\circ}C$ Gas Source: Nitrogen Tank **Ambient Limits:** 5°C - 40°C; Humidity ≤85%

Calibration

Cal

ASTM D5481 recommends calibrating HTHS instruments using at least four of the following calibration oils.

bration Oils for High-Temperature High-Shear			
Calibration			
ibration Oil	Approximate Viscosity	Approximate Pressure for Test Method	
HT39	2.0 mPa-s	225 psi	1500 kPa
HT75	2.7 mPa-s	290 psi	2000 kPa
IT150	3.7 mPa-s	375 psi	2500 kPa
IT240	5.0 mPa-s	480 psi	3300 kPa
IT390	7.0 mPa-s	645 psi	4500 kPa

Conclusion

The HTHS provides a valuable means of determining the viscosity grades of standard oils that are subjected to high-temperature and highshear conditions. In accordance with ASTM D5481, the HTHS instrument utilizes a multicellular viscometer to simulate real engine operation conditions by pressurizing the system and displacing the sample. In doing so, the sample's viscosity and shear can be determined.